Groups of order 4p, twisted wreath products and Hopf–Galois theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wreath Products and Existentially Complete Solvable Groups

It is known that the theory of abelian groups has a model companion but that the theory of groups does not. We show that for any fixed 22 a 2 the theory of groups solvable of length s 22 has no model companion. For the metabelian case (22 = 2) we prove the stronger result that the classes of finitely generic, infinitely generic, and existentially complete metabelian groups are all distinct. We ...

متن کامل

The Geometry of Twisted Conjugacy Classes in Wreath Products

We give a geometric proof based on recent work of Eskin, Fisher and Whyte that the lamplighter group Ln has infinitely many twisted conjugacy classes for any automorphism φ only when n is divisible by 2 or 3, originally proved by Gonçalves and Wong. We determine when the wreath product G o Z has this same property for several classes of finite groups G, including symmetric groups and some nilpo...

متن کامل

Wreath products of cyclic p-groups as automorphism groups

We prove that if p is a prime and W is the standard wreath product of two nontrivial cyclic p-groups X and Y then W is isomorphic to the full automorphism group of some group if and only if |X| = 2 and |Y | is 2 or 4.

متن کامل

Flag Weak Order on Wreath Products

A generating set for the wreath product Zr ≀ Sn which leads to a nicely behaved weak order is presented. It is shown that the resulting poset has properties analogous to those of the weak order on the symmetric group: it is a self-dual lattice, ranked by the Foata–Han flag inversion number; any two maximal chains are connected via Tits-type pseudo-Coxeter moves; and its intervals have the desir...

متن کامل

Character theory of infinite wreath products

The representation theory of infinite wreath product groups is developed by means of the relationship between their group algebras and conjugacy classes with those of the infinite symmetric group. Further, since these groups are inductive limits of finite groups, their finite characters can be classified as limits of normalized irreducible characters of prelimit finite groups. This identificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2007.04.001